CONFORMITY TESTING LABS PVT. LTD.

Report No: 2NL202319020

Dated: 24/07/2023

Page

1 of 20

ULR No. TC540923000001108F

TEST REPORT

IS 16169: 2014/IEC 62116:2008

Test Procedure of Islanding Prevention Measures for Utility-Interconnected

- Photovoltaic Inverters								
Report Reference No:	2NL202319020							
Date of issue:	24/07/2023							
Total number of pages:	20							
Testing Laboratory:	Conformity Testing Labs Pvt. Ltd.	国际高级国						
Address::	Unit 2, A-33, Mayapuri Industrial Area, Phase-I, New Delhi-110064, India							
Applicant's name:	ENERTECH UPS PVT. LTD.							
Address::	S. Ho. 399/1-2, Plot No:-5, Bhare P.O, Ghotawade (Near Pirangut), Tal-Mulshi, Dist-Pune-412115							
Test specification:	Refer below							
Standard:	IS 16169: 2014/ IEC 62116:2008							
Test procedure:	As per above standard							
Non-standard test method:	N/A							
Test Report Form No:	CTL_IS 16169_TRF_V1.0							
Test Report Form Originator:	Conformity Testing Labs Pvt. Ltd., Unit 2, New Delhi							
Master TRF:	01/10/2019							
Test item description:	Solar PCU							
Trade Mark:	EnerTech Answering All Power Needs							

CONFORMITY TESTING LABS PVT. LTD.

Report No: 2NL202319020

Page

2 of 20

Dated: 24/07/2023

Manufacturers:	ENERTECH UPS PVT. LTD.
Factory	S. Ho. 399/1-2, Plot No:-5, Bhare P.O, Ghotawade (Near Pirangut), Tal-Mulshi, Dist-Pune-412115
Model/Type reference:	Sunmagic-REeFi
Ratings:	See copy of marking label (Refer page no. 03)
Serial No	3202212035

Testing procedure and testing location	esting procedure and testing location:							
Testing Laboratory:	Conformity Testing Labs Pvt. Ltd.							
Testing location/ address:	Unit 2, A-33, Mayapuri Industrial Area, Phase-I, New Delhi-110064, India							
Tested by (name + signature):	Vikas Verma (Sr. Test Engineer)							
Approved by (+ signature):	Sandeep Kumar Patel (Sr. Test Engineer)							
Issued by(name+ signature)	: Madhuri Khanna (Customer Executive)							

Report No: 2NL202319020

Page

Dated: 24/07/2023

3 of 20 ULR No. TC540923000001108F

Summary of testing:

Tests performed (name of test and test clause):

Cl 6: Test for single or multi-phase inverter

CI 7: Documentation

Testing location:

Conformity Testing Labs Pvt. Ltd.


Unit 2, A-33, Mayapuri Industrial Area, Phase-I,

New Delhi 110064, India

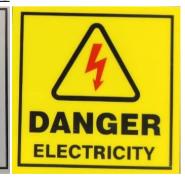
Unintensional Islanding

Copy of marking plate:

Marking Label of Solar PCU

Warning Label on Solar PCU

DO'S AND DON'TS


Do not disconnect the batteries from UPS. Do not turn the OFF the Grid supply.

Check the battery electrolyte level and specific gravity regularly; apply petroleum jelly at battery terminals to avoid sulphation at battery terminals.

Ensure battery connections are tight with proper cable size.

Do not overload the UPS.

Keep the UPS room well ventilated.

TRF No.CTL_IS 16169/ IEC 62116_V1.0

Report No: 2NL202319020

Dated: 24/07/2023

Page

4 of 20

Possible test case verdicts:	See below
- test case does not apply to the test object:	N/A
- test object does meet the requirement:	P (Pass)
- test object does not meet the requirement:	F (Fail)
Testing ::	See below
Date of receipt of test item	13/05/2023
Date(s) of performance of tests:	22/05/2023 to 08/07/2023
Condition of Samples	Good
Laboratory conditions:	See below
Ambient Temperature	25 ± 5°C
Ambient Humidity:	45% - 75% RH

GENERAL INFORMATION	
Test item particulars:	Three Phase Solar PCU
Accessories and detachable parts included in the evaluation:	N/A
Options included:	N/A
Abbreviations used in the report:	Refer below
EUT – Equipment Under Test	MPPT – Maximum Power Point Tracking
Qf- Quality factor	W - Utility Real Power
Var – Utility Reactive Power	VDC – DC Voltage
VEUT – AC Voltage of EUT	tR– Run on time
IR – Resistive load current	IL – Inductive load current
IC - Capacitive load current	PAC – Utility Real Power
QAC – Utility Reactive Power	IAC – Utility Current
Possible test case verdicts	See below
Test case does not apply to the test object	N/A
Test object does meet the requirement	Pass (P)
Test object does not meet the requirement:	Fail (F)

CONFORMITY TESTING LABS PVT. LTD.

Report No: 2NL202319020

Page

Dated: 24/07/2023

5 of 20

ULR No. TC540923000001108F

Manufacturer's Declaration as per standard: Similarities between the models: N/A Differences between models: N/A General remarks: The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the issuing testing laboratory. "(See Enclosure #)" refers to additional information appended to the report. " See appended table)" refers to a table appended to the report. Throughout this report a point is used as the decimal separator.

Report No: 2NL202319020

Dated: 24/07/2023

Page

6 of 20

ULR No. TC540923000001108F

General Product Information:

Product Electrical Ratings

Parameter		Value	Remarks
1) Rating			
a) Maximum output power	kW	15	
b) DC voltage range	Vdc	300-400	
c) DC current limits	Adc	62	
d) AC voltage range	Vac	3/N/PE AC 230/400	
e) Frequency range	Hz	50	
f) AC current limits	Α	23/Phase	
g) Efficiency	%	up to 90	
h) Voltage trip settings (magnitude and timing)	V	Under Voltage: 196V, 2 sec. Over Voltage: 265V, 2 sec.	
i) Frequency trip settings (magnitude and timing)	Hz	Under Frequency: 48.1Hz, 1 sec. Over Frequency: 52.2Hz, 1 sec.	
i) Other software settings		N/A	
j) Firmware version		Firmware version: 330.xx	
2) Others		Nil	
a) Displays		LCD	
b) Temperature range	°C	0 to 40	
c) Humidity	%	up to 95	
d) Size	mm	800mm*800mm*450mm	
e) Weight	Kg	150	

Report No: 2NL202319020

Page

7 of 20

Dated: 24/07/2023

ULR No. TC540923000001108F

Clause	Requirement + Test	Result - Remark	Verdict	
Discipline:	Electrical	Group: Power Supplies	& Stabilizer	
4	Testing circuit			
	The testing circuit shown in Figure 1 is employed.	See below	Р	
	Similar circuits are used for three-phase output.	Three phase output	Р	
	Parameters to be measured are shown in Table 1	Parameter to be measured	Р	
	and Figure 1. Parameters to be recorded in the test	according to clause 7 and		
	report are discussed in Clause 7.	reported in the test report		
)	Testing equipment			
5.1	Measuring instruments	See below	Р	
	The waveform measurement/capture device is able	Waveform observed through	Р	
	to record the waveform from the beginning of the	oscilloscope		
	islanding test until the EUT ceases to energize the			
	island.			
	For multi-phase EUT, all phases are monitored.	Three phase EUT	Р	
	A waveform monitor designed to detect and	In compliance	Р	
	calculate the run-on time may be used.			
	For multi-phase EUT, the test and measurement	Three phase EUT	Р	
	equipment is recorded each phase current and			
	each phase-to-neutral or phase-to-phase voltage,			
	as appropriate, to determine fundamental			
	frequency active and reactive power flow over the			
	duration of the test.			
	A sampling rate of 10 kHz or higher is	In compliance	Р	
	recommended. The minimum measurement			
	accuracy is 1 % or less of rated EUT nominal			
	output voltage and 1 % or less of rated EUT output			
	current			
		In compliance	Р	
	measurements through switch S1 used to			
	determine the circuit balance conditions report the			
	fundamental (50 Hz or 60 Hz) component.			
5.2	DC power source	·		
5.2.1		See below	Р	
		DC power source used	Р	
	be used. If the EUT can operate in utility-			
	interconnected mode from a storage battery, a DC			
	power source may be used in lieu of a battery as			
	long as the DC power source is not the limiting			
	device as far as the maximum EUT input current is			
	concerned.			
	The DC power source provides voltage and current	In compliance	Р	
	necessary to meet the testing requirements			
	described in Clause 6.			
5.2.2	PV array simulator	DC power source used	N/A	
	The tests are conducted at the input voltage defined	As above	N/A	
	in Table 2 below, and the current is limited to 1,5			
	times the rated photovoltaic input current, except			
	when specified otherwise by the test requirements. A PV array simulator is recommended, however,	As above	N/A	
	any type of power source may be used if it does	ADOVE	IN/A	
	not influence the test results.			

_

CONFORMITY

CONFORMITY TESTING LABS PVT. LTD.

Report No: 2NL202319020

Dated: 24/07/2023

Page

8 of 20

Clause	Requirement + Test		Result - Remark	Verdict	
5.2.3	Current and voltage limited series resistance	DC power supply with	DC power supplied used	Р	
	A DC power source used as is capable of EUT maximum achieve EUT maximum out and maximum EUT input or	n input power (so as to put power) at minimum	In compliance		
	The power source provides voltage limit, set to provide current and open circuit volwith the series and shunt rebelow.	the desired short circuit tage when combined	In compliance	Р	
	A series resistance (and, or resistance) is selected to presistance) is selected to presistance. Output power: Sufficient to output power and other level conditions of table 5. Response speed: The response	provide a fill factor within provide maximum EUT els specified by test conse time of a simulator due to a 5% load of the output current to in less than 1ms. ations caused by the ut power remains stable er level over the e point where load e island condition is	r		
5.2.4	PV array		DC Source used	N/A	
	A PV array used as the EU capable of EUT maximum in and maximum EUT input or	nput power at minimum	As above	N/A	
	Testing is limited to times we varies by no more than 2 % test as measured by a silicon reference device. It may be the array configuration to account and power levels prescribed	when the irradiance over the duration of the on-type pyranometer or necessary to adjust chieve the input voltage	As above	N/A	
5.3	AC power source			1	
	The utility grid or other AC pused as long as it meets the Table 4.	e conditions specified in	AC Power source meets the requirements as specified in Table 4.	P	
	Items	Conditions			
	Voltage Nor	minal ±2,0 %			
		,5 %			
	Frequency	minal ±0.1 Hz			
	A) 47	minal ±0,1 Hz			

CONFORMITY TESTING LABS PVT. LTD.

Report No: 2NL202319020

Page

9 of 20

Dated: 24/07/2023

ULR No. TC540923000001108F

Clause	Requirement + Test	Result - Remark	Verdict
5.4	AC loads		
	On the AC side of the EUT, variable resistance, capacitance, and inductance are connected in parallel as loads between the EUT and the AC power source. Other sources of load, such as	Variable RLC (AC) load used	Р
	electronic loads, may be used if it can be shown that the source does not cause results that are different than would be obtained with passive resistors, inductors, and capacitors.		
	All AC loads are rated for and adjustable to all test conditions. The equations for Qf are based upon an ideal parallel RLC circuit. For this reason, non-inductive resistors, low loss (high Qf) inductors, and capacitors with low effective series resistance and effective series inductance are utilized in the test circuit. Iron core inductors, if used, are not exceed a current THD of 2 % when operated at nominal voltage. Load components are conservatively rated for the voltage and power levels expected. Resistor power ratings are chosen so as to minimize thermally-induced drift in esistance values during the course of the test.	Meeting the requirements	P
	Active and reactive power is calculated (using the measurements provided in Table 1) in each of the R, L and C legs of the load so that these parasitic parameters (and parasitics introduced by variacs or autotransformers) are properly accounted for when calculating Qf.	In compliance	P
	Test for single or multi-phase inverter		
.1	Test procedure	See below	P
	The test uses an RLC load, resonant at the EUT nominal frequency (50 Hz or 60 Hz) and matched to the EUT output power.	Variable RLC (AC) load used	Р
	For multi-phase EUT, the load is balanced across all phases and the switch S1 as in Figure1 opens all phases	Three phase EUT	Р
	This test is performed with the EUT conditions as in Table 5, where power and voltage values are given as a percent of EUT full output rating.	See below	Р
	a). Determine EUT test output power	Refer appended table 6.1	Р
		Refer appended table 6.1	Р
		Refer appended table 6.1	Р
	d) Adjust the RLC circuit to have Qf = 1.0 ±0.05	Refer appended table 6.1	Р
	e). Connect the RLC load configured in step d) to the EUT by closing S2	Refer appended table 6.1	Р
	f). Open the utility-disconnect switch S1 to initiate the test, Run-on time is recorded.	Refer appended table 6.1	Р

CONFORMITY TESTING LABS PVT. LTD.

Report No: 2NL202319020

Page

Dated: 24/07/2023 10 of 20

TESTING LADS	Dated: 24/01/2023	10 01 20	
	ULR No. TC54092300000	01108F	
	g). For test condition A, adjust the real load and only one of the reactive load components to each of the load imbalance conditions shown in the shaded portion of table 6. If any of the recorded run-on times are longer than the one recorded for the rated balance condition, then the non-shaded parameter combinations also require testing.	Refer appended table 6.1	Р
	h) For test condition B and C, adjust the only one reactive load components by approximately 1,0% per test, within a total range of 95% to 105% of the operating point. If run-on times are still increasing at the 95% or 105% points, additional 1% increments have to be taken until run-on times begin decreasing.	Refer appended table 6.1	Р
6.2	Pass/fail criteria An EUT is considered to comply with the requirements for islanding protection when each case of recorded run-on time is less than 2 s or meets the requirements of local codes.	Refer appended table 6.1	Р
7	Documentation		
	At a minimum, the following information is recorded and maintained in the test report.	Refer below	Р
	a) Specifications of EUT. Table 8 provides an example of the type of information that is provided.	See attached technical data sheet on page no. 19-20	Р
	b) Measurement results. Table 9 provides an example of the type of information that is provided. Actual measured values are to be recorded.	Refer appended table 6.1	Р
	c) Block diagram of test circuit.	Refer page no. 14	Р
	d) Specifications of the test and measurement equipment. Table 10 provides an example of the type of information that is provided.	In compliance	Р
	e) Any test configuration or procedure details such as methods of achieving specified load and EUT output conditions.	In compliance	Р
	f) Any additional information required by the testing laboratory's accreditation.	Nil	N/A
	g) Specify the evaluation criterion from clause 6.2 that was utilized to determine if the product passed or failed the test.	Comply with the criteria	Р
Annex A	Islanding as it applies to PV systems(Informative)	In compliance	Р
A.1	General	Refer attachment-1	Р
A.2	Impact of distortion on islanding	Refer attachment-1	Р
Annex B	Test for independent islanding detection device (rela		N/A
B.1	Introduction	No such application	N/A
B.2	Testing circuit	As above	N/A
B.3	Testing equipment	As above	N/A
B.4	Testing procedure	As above	N/A
B.5	Documentation	As above	N/A
		US anove	IN/A

Report No: 2NL202319020

Page

11 of 20

Dated: 24/07/2023

ULR No. TC540923000001108F

6.1	Table:	Γested c	ondition	and run-	on time							
S no.	PEU T a (% of EUT Rating)	Reactive load (% of QL)	PAC b (% of nominal)	QAC c (% of nominal	Run on time (ms)	PEU T (KW)	Pr(resi stive) KW	PI (Inductiv e) Kvar	Pc (Capa citve) Kvar	Actual Qf	VDC	Rem arks
1.	100	100	0	0	340	15.000	L2: 5.110		L2: 4.991	L1: 0.991 L2: 0.994 L3: 0.990	400	Test A at BL
2.	66	66	0	0	130	9.900	L1: 3.274	L1: 3.269 L2: 3.283	L1: 3.285 L2: 3.278	L1: 1.001 L2: 1.006 L3: 1.001	264	Test B at BL
3.	33	33	0	0	94	4.950	L1: 1.574 L2: 1.566	L1: 1.563	L1: 1.564 L2: 1.568	L1: 0.993 L2: 0.996 L3: 0.987	132	Test C at BL
4.	100	100	-5	-5	422	15.000	L1: 5.210 L2: 5.212	L1: 5.196 L2: 5.227	L1: 4.962 L2: 4.978	L1: 0.975 L2: 0.979 L3: 0.981	400	Test A at IB
5.	100	100	-5	0	359	15.000	L1: 5.207 L2: 5.203	L1: 4.962 L2: 4.968	L1: 4.961	L1: 0.953 L2: 0.955	400	Test A at IB
6.	100	105	-5	5	325	15.000	L1: 5.215	L1: 4.975 L2: 4.995 L3: 4.978	L1: 4.968 L2: 4.975	L1: 0.953 L2: 0.954 L3: 0.955	400	Test A at IB
7.	100	100	0	-5	312	15.000	L1: 5.125 L2: 5.115	L1: 5.199 L2: 5.202 L3: 5.135	L1: 4.964 L2: 4.982	L1: 0.991 L2: 0.995 L3: 0.998	400	Test A at IB
8.	100	100	0	5	345	15.000	L1: 4.981	L1: 4.701 L2: 4.709	L1: 4.972 L2: 4.913	L1: 0.971 L2: 0.968 L3: 0.996	400	Test A at IB
9.	100	100	5	-5	395	15.000	L1: 5.115 L2: 5.165	L1: 5.201 L2: 5.203	L1: 4.955 L2: 4.982	L1: 0.992 L2: 0.986 L3: 0.980	400	Test A at IB
10.	100	100	5	0	282	15.000	L1: 5.132 L2: 5.115		L1: 4.951 L2: 4.901	L1: 0.983 L2: 0.981	400	Test A at IB
11.	100	100	5	5	399	15.000	L1: 4.975 L2: 4.945	L1: 5.125 L2: 5.130 L3: 5.115	L1: 4.805 L2: 4.799	L1: 0.997 L2: 1.003	400	Test A at IB
12.	100	100	-10	10	332	15.000	L1: 5.110 L2: 5.125	L1: 4.990 L2: 4.995 L3: 5.955	L1: 4.755 L2: 4.758	L1: 0.953 L2: 0.951	400	Test A at IB
13.	100	100	-5	10	351	15.000	L1: 5.195 L2: 5.185		L1: 4.962 L2: 4.913	L1: 0.955 L2: 0.953	400	Test A at IB
14.	100	100	0	10	317	15.000	L1: 5.215 L2: 5.210		L1: 4.966 L2: 4.915	L1: 0.953 L2: 0.951	400	Test A at IB
15.	100	100	10	10	310	15.000	L1: 4.995 L2: 5.050	L1: 5.165 L2: 5.135 L3: 5.210	L1: 4.852 L2: 4.865	L1: 1.002 L2: 0.990	400	Test A at IB

Report No: 2NL202319020

Dated: 24/07/2023

Page

12 of 20

16.	100	100	10	5	325	15.000	L1: 5.015	L1: 5.165	L1: 4.880	L1:1.001	400	Test A
							L2: 5.065	L2: 5.175	L2: 4.875	L2: 0.992		at IB
							L3: 5.045	L3: 5.185	L3: 4.890	L3: 0.998		
17.	100	100	10	0	370	15.000	L1: 5.125	L1: 5.155	L1: 4.895	L1: 0.980	400	Test A
							L2: 5.110	L2: 5.145	L2: 4.890	L2: 0.982		at IB
							L3: 5.145	L3: 5.175	L3: 4.895	L3: 0.978		
18.	100	100	10	-5	305	15.000	L1: 4.965	L1: 5.150	L1: 4.775	L1: 0.999	400	Test A
							L2: 4.985	L2: 5.115	L2: 4.825	L2: 0.997		at IB
							L3: 4.975	L3: 5.175	L3: 4.790	L3: 1.001		
19.	100	100	10	-10	348	15.000	L1: 4.995	L1: 5.165	L1: 4.785	L1: 0.995	400	Test A
							L2: 4.999	L2: 5.145	L2: 4.825	L2: 0.997		at IB
							L3: 5.065	L3: 5.135	L3: 4.825	L3: 0.983		
20.	100	100	5	-10	345	15.000	L1: 5.145	L1: 5.275	L1: 4.785	L1: 0.976	400	Test A
							L2: 5.135	L2: 5.245	L2: 4.825	L2: 0.980		at IB
0.4	400	400		4.0	000	45.000	L3: 5.120	L3: 5.255	L3: 4.910	L3: 0.992	400	T . A
21.	100	100	0	-10	238	15.000	L1: 5.160	L1: 5.175	L1: 4.885	L1: 0.974	400	Test A
							L2: 5.155	L2: 5.145	L2: 4.835	L2: 0.968		at IB
00	400	400	_	40	005	45.000	L3: 5.145	L3: 5.160	L3: 4.855	L3: 0.973	400	T4 A
22.	100	100	-5	-10	285	15.000	L1: 5.212	L1: 5.444	L1: 4.961	L1: 0.997	400	Test A
							L2: 5.205	L2: 5.450	L2: 4.903	L2: 0.993		at IB
23.	100	100	-10	-10	298	15.000	L3: 5.201	L3: 5.460	L3: 4.964	L3: 1.001	400	Test A
23.	100	100	-10	-10	290	15.000	L1: 5.285	L1: 5.445 L2: 5.453	L1: 4.966 L2: 4.915	L1: 0.984 L2: 0.977	400	at IB
							L2: 5.299					alib
24.	100	100	-10	-5	386	15.000	L3: 5.279	L3: 5.465 L1: 5.427	L3: 4.971	L3: 0.987 L1: 0.976	400	Test A
24.	100	100	-10	-3	300	13.000	L1: 5.322 L2: 5.299	L1: 5.427 L2: 5.435	L1: 4.973 L2: 4.980	L2: 0.982	400	at IB
							L2: 5.299 L3: 5.285	L2: 5:435 L3: 5.431	L2: 4.960 L3: 4.968	L3: 0.983		atib
25.	100	100	-10	0	364	15.000	L1: 5.362	L1: 5.452	L1: 4.977	L1: 0.971	400	Test A
20.	100	100	10		304	10.000	L2: 5.333	L2: 5.444	L2: 4.985	L2: 0.977	400	at IB
							L3: 5.341	L3: 5.458	L3: 4.980	L3: 0.976		u. 15
26.	100	100	-10	5	392	15.000	L1: 5.265	L1: 5.315	L1: 4.925	L1: 0.972	400	Test A
							L2: 5.250	L2: 5.325	L2: 4.945	L2: 0.977		at IB
							L3: 5.235	L3: 5.335	L3: 4.930	L3: 0.980		
27.	66	66	0	-5	305	9.900	L1: 3.275	L1: 3.325	L1: 3.230	L1: 1.001	264	Test B
							L2: 3.265	L2: 3.315	L2: 3.220	L2: 1.001		at IB
							L3: 3.285	L3: 3.320	L3: 3.245	L3: 1.999		
28.	66	66	0	-4	257	9.900	L1: 3.249	L1: 3.195	L1: 3.272	L1: 0.995	264	Test B
							L2: 3.235	L2: 3.215	L2: 3.265	L2: 1.002		at IB
							L3: 3.262	L3: 3.210	L3: 3.252	L3: 0.990		
29.	66	66	0	-3	284	9.900	L1: 3.272	L1: 3.205	L1: 3.266	L1: 0.989	264	Test B
							L2: 3.265	L2: 3.225		L2: 0.996		at IB
								L3: 3.218		L3: 0.990		
30.	66	66	0	-2	279	9.900		L1: 3.235		L1: 0.996	264	Test B
										L2: 0.999		at IB
				<u> </u>			L3: 3.275	L3: 3.230		L3: 0.996		<u> </u>
31.	66	66	0	-1	294	9.900	L1: 3.270	L1: 3.275		L1: 0.999	264	Test B
								L2: 3.305				at IB
	00	00	_	1	0.10	0.000	L3: 3.268	L3: 3.295			00.4	T
32.	66	66	0	1	246	9.900	L1: 3.301	L1: 3.230		L1: 0.984	264	Test B
								L2: 3.246		L2: 0.990		at IB
22	66	ee.	0	2	204	0.000	L3: 3.288	L3: 3.225		L3: 0.988	264	Toot B
33.	66	66	U	4	301	9.900					264	Test B at IB
								L2: 3.213				al ID
34.	66	66	0	3	282	9.900		L3: 3.190 L1: 3.166		L3: 0.991 L1: 0.986	264	Test B
) 4 .	00	00			202	9.900	L1: 3.268	L1: 3:100 L2: 3:178			204	at IB
								L3: 3.178		L3: 0.996		D
\Box			l	1		1	_0. 0.220	_0. 0. 100	_0. 0.203	_0. 0.000		1

Report No: 2NL202319020

Dated: 24/07/2023

Page

13 of 20

ULR No. TC540923000001108F

35.	66	66	0	4	268	9.900		est B
							L2: 3.259 L2: 3.146 L2: 3.279 L2: 0.986 a	at IB
							L3: 3.272 L3: 3.123 L3: 3.270 L3: 0.977	
36.	66	66	0	5	281	9.900		est B
							L2: 3.268 L2: 3.110 L2: 3.274 L2: 0.976 a	at IB
							L3: 3.282 L3: 3.089 L3: 3.269 L3: 0.968	
37.	33	33	0	-5	182	4.950		est C
								at IB
							L3: 1.573 L3: 1.610 L3: 1.549 L3: 1.004	
38.	33	33	0	-4	195	4.950		est C
								at IB
							L3: 1.592 L3: 1.585 L3: 1.560 L3: 0.988	
39.	33	33	0	-3	145	4.950		est C
								at IB
				_			L3: 1.591 L3: 1.583 L3: 1.560 L3: 0.988	
40.	33	33	0	-2	162	4.950		est C
								at IB
44		00			400	4.050	L3: 1.562 L3: 1.578 L3: 1.550 L3: 1.001	
41.	33	33	0	-1	180	4.950		est C
								at IB
40	22	22	0	4	475	4.050	L3: 1.578 L3: 1.575 L3: 1.558 L3: 0.993	+ 0
42.	33	33	0	1	175	4.950		est C at IB
								IL ID
43.	33	33	0	2	199	4.950	L3: 1.542 L3: 1.523 L3: 1.543 L3: 0.994 L1: 1.565 L1: 1.528 L1: 1.572 L1: 0.990 L132 L6: 1.572 L1: 0.990 L	est C
43.	33	33	U	2	199	4.950		at IB
							L3: 1.551 L3: 1.509 L3: 1.564 L3: 0.990	מו זו
44.	33	33	0	3	177	4.950		est C
77.	55	33		3	1'''	7.330		at IB
							L3: 1.567 L3: 1.493 L3: 1.554 L3: 0.972	
45.	33	33	0	4	169	4.950		est C
.0.	00			'	100	1.000		at IB
							L3: 1.573 L3: 1.476 L3: 1.561 L3: 0.965	
46.	33	33	0	5	187	4.950		est C
								at IB
							L3: 1.574 L3: 1.461 L3: 1.560 L3: 0.959	
				1		I .		

a PEUT: EUT output power.

b PAC: Active power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.

c QAC: Reactive power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.

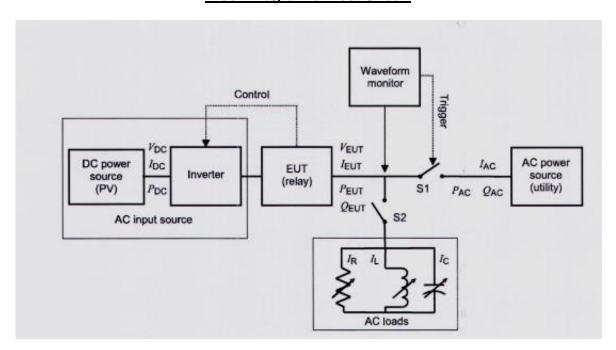
d BL: balance condition, IB: imbalance condition.

CONFORMITY TESTING LABS PVT. LTD.

Report No: 2NL202319020

Dated: 24/07/2023

Page


14 of 20

ULR No. TC540923000001108F

Block Diagram of Test Circuit

Report No: 2NL202319020

Page

15 of 20

Dated: 24/07/2023

ULR No. TC540923000001108F

Attachment-1

Photographs of the Sample:

Front View

Rear View

Top View

Repo

CONFORMITY

CONFORMITY TESTING LABS PVT. LTD.

Report No: 2NL202319020

Page

Dated: 24/07/2023

16 of 20

ULR No. TC540923000001108F

Internals View

CONFORMITY TESTING LABS PVT. LTD.

Report No: 2NL202319020

Page

Dated: 24/07/2023

17 of 20

ULR No. TC540923000001108F

Sides View

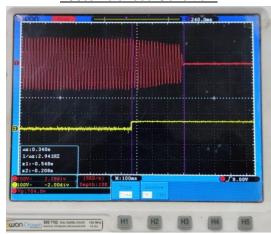
F

CONFORMITY

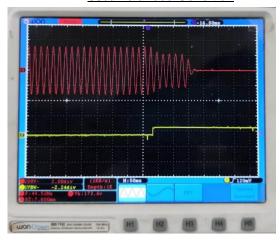
CONFORMITY TESTING LABS PVT. LTD.

Report No: 2NL202319020

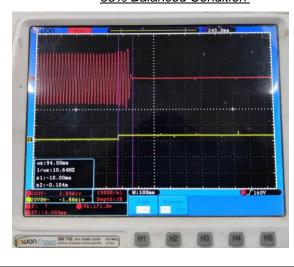
Page

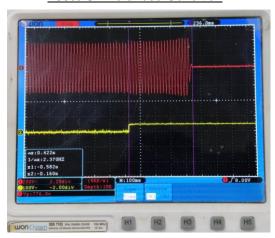


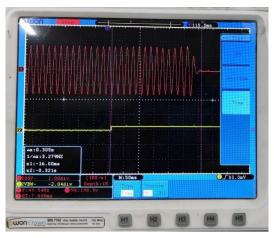
Dated: 24/07/2023

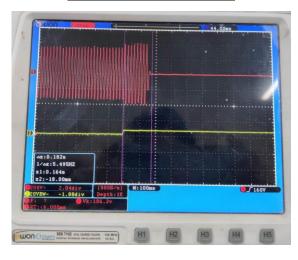

18 of 20 ULR No. TC540923000001108F

Waveforms


100% Balanced Condition


66% Balanced Condition


33% Balanced Condition


100% Un-Balanced Condition

66% Un-Balanced Condition

33% Un-Balanced Condition

CONFORMITY TESTING LABS PVT. LTD.

Report No: 2NL202319020

Page

19 of 20

Dated: 24/07/2023

ULR No. TC540923000001108F

Technical Data sheet

SPECIFICATION

		STANI	DARD SP	FCIFICA	TION SM	MART STO	RAGE SOL	ΔR INVFR	TER SunN	∕lagic RFe	·FΙ					
INIVEDTED CADACITY/IA/A)	-				_							120	150	200	250	200
INVERTER CAPACITY (kVA)	5	10	15	20	25	30	40	50	60	80	100	120	150	200	250	300
Input Wiring							2 D L	l five wire	(2 DU ±	NI ± E/						
Input Neutral Requirement	-						371			N T E)						
Nominal Voltage	YES 3/N/PE AC 230/400V															
Grid Frequency Sync Range									(± 6%)	•						
Unity power Factor for grid charging		Near to Unity														
Operating condition	Continuous															
Input Fault Level									.0 kA							
Self-Consumption	i							up t	o 4%							
Charger Peak Efficiency								upto	95%							
DG Compatibility		YES (Double of Inverter Capacity)														
Grid Compatibility		YES SAME AS INVERTER CAPACITY														
Input Voltage distortion allowed									HAN 3%							
Grid Charger capacity	50% of KVA rating															
SOLAR																
Charger Type								М	PPT							
Max PV Connection in kWP	5	10	15	20	25	30	40	50	60	80	100	120	150	200	250	300
May DV Voltage (VOC)	250V	300V	450V	500V	500V	500/600	500/600	500/600	500/600	500/600	500/600	500/600	600V	900V	11001/	1100\
Max PV Voltage (VOC)		3000	4500	3000	3000	V	V	V	V	V	V	V	6007	9000	1100V	11000
MPPT Voltage Range	120- 180V 165-250V 300-400V for 240VDC / 450-600V for 360VDC OR 384VDC 800 - 1000V													V		
MPPT Modes Available								3 (Sele	ectable)							
No of MPPT Channel					1				2	2	2	2	2	3	3	3
Panel Reverse Protection								Υ	es							
Solar Charger Efficiency								up to	95%							
BATTERY																
Nominal Battery Voltage (VDC)	96	120	0	2	240	360				360 / 384	1			480/600	576/	600
Battery Buffer Setting																
	DC Voltage Selectable Through kay pad															
Grid Charging Current	SETTABLE THROUGH KAY PAD															
Temperature Compensated Charging	YES															
Battery Charging Voltage	Selectable from LCD Display Lead Acid / VRLA / Ni-Cd/ Lithium Ion															
Type & No. of cells	_						Lead Aci			ithium io	n					
BMS compatible								Y	ES							
OUTPUT																
Load Power Factor									VA = kW							
Output Voltage (Inverter Mode)	3/N/PE AC 230/400V 50 Hz ± 1%															
Output Frequency (Free Running)																
Output Waveform	—								ne wave							
Peak Inverter Efficiency (Full Load) Total Harmonic Distortion	\vdash							upto pto 3% at	90%	and						
Overload Capacity	\vdash															
Changeover Time (Full load)	125% for 60Sec, 150% for 5 Sec <10 msec															
DC to AC Galvanic Isolation	<10 msec In built Isolation Transformer at Inverter Output															
Anti Islanding Function	In Dulit isolation i ransformer at inverter Output In Compliance with IEC 62116															
Auto Bypass feature	IN COMPILANCE WITH IEC 62116 YES															
Unbalance load handaling capacity	YES															
Duty	Continuous															
CONFIGURATION																
Modes Available							Grid sa	ving, Batte	ery backu	p, Export						
power Export to Grid																
power import from Grid		Enable / Disable option Available Enable / Disable option Available														
ENVIRONMENTAL																
Acoustic Noise Level from 1 m								≤ 6	5 dB							
Operating Temperature						0 to 40	Deg C(Du			dry envir	onment)					
Storage Temperature								10 Deg C			,					
Relative Humidity								95 % (No								
Altitude								00 meter								
Sysmic Requirement								upto	0.5g							

Report No: 2NL202319020

Dated: 24/07/2023

Page

20 of 20

ULR No. TC540923000001108F

SPECIFICATION

PHYSICAL																			
Enclosure Protection Grade					IP 20	Compat	ible to IEC	60529:20	01- As pe	r MNRE R	lequireme	ent							
Enclosure Thickness		as per industrial standard																	
Cooling								Foro	ed Air										
Colour		RAL 7016 RAL 9016																	
Cable Entry		Bottom																	
Parameters displayed on LCD																			
Input Group				1. Voltag	ge, 2.Cu	rrent, 3. i	Frequency	, 4. kW, 5	5. kVA, 6.	Import k\	Wh , 7. Ex	port kWh	, 8. PF						
Inverter Group	T	1. Voltage, 2. Current, 3. Frequency, 4. kVA																	
OutputGroup		1. Voltage, 2. Frequency																	
OutputGroup	\top	 Solar Voltage , 2. Solar Current, 3. Power(kW), 4. Solar Energy (kWh) 																	
Battery Group		1. Voltage, 2. Current 3. SoC																	
PROTECTIONS																			
ELECTRICAL PROTECTIONS	CIRCUIT BREAKER and Fuse																		
ELECTRONIC PROTECTIONS																			
	Alarms are provided for all important protections.																		
inverter Group	1		1.ln	put Und	ler Volta	ge, 2.lnp	ut Over V	oltage, 3.	Charger (over Volta	ge, 4. Und	der /Over	Freque	ncy					
inverter Group	-	1. Output Under Voltage, 2. Output Over Voltage 3. Overload, 4. Output short Circuit, 5. Inverter Over Temperature																	
Solar Group	1	1. Surge Protection , 2. Reverse PV Pannel protection																	
Battery Group	-	1. Battery low , 2. Battery Over charge 3., Battery Charging Current limit																	
CONNECTIVITY																			
Communication	$\overline{}$							RS 232 0	or RS 485										
Protocol	\top	MODBUS RTU																	
LCD with backlight & Tactile kay pad	1								F.C.										
Interface								Y	ES										
Testingstandard	$\overline{}$	T I	EC-6168	3:1999,	IEC- 600	68-2-1, IE	C-60068-	2-2, IEC-6	0068-2-14	1, IEC-600	68-2-30- A	s per MN	IRE Req	uirement					
Saftey Factor							1 for elec	tronic dev	ices, 1 fo	r electrica	al								
Earthing Connection (Ref. is 3043)	E	25- 40 kVA: 3 x 25 mm GI Earth terminal block (Earth bus bar running along the panel)							45-150 kVA: 6 x 50 mm GI (Earth bus bar running along the panel) 200-300KVA: 6 x 50 mm GI (Earth bus bar running along the panel)										
Illumination lamp		N.A.						11 W CFL											
Gland Plate				NA				3 mm MS C.R.C.A.											
Utility Socket		NA							5 A / 230 VAC										
Dimensions (in mm)	_																		
KVA Rating	5	10	15	20	25	30	40	50	60	80	100	120	150	200	250	300			
Width (W)	450	450	450	450	450	450	600	800	800	1100	1100	1100	1565	1570	2900	2900			
Depth (D)	800	800	800	800	950	950	1000	950	950	800	800	800	850	850	850	850			
Height (H)	800	800	800	800	800	800	1300	1700	1700	1900	1900	1900	1900	1900	1900	1900			
Weight (Kg) APPROX.	125	150	150	300	350	350	650	650	700	850	900	1000	1200	1400	1500	1600			
Add on ACCESSORIES (not standard Pa	art fo inve	rter)																	
	1)GSM Based Remote Monitoring, 2.) 2) Modbus RS485 3) RADIATION SENSOR (Pyranometer) 4) SMOKE DETECTOR. 5) IP 42 Enclosure and above. 6) MANUAL BYPASS												and						

****End of Test Report***